

Synthesis of Flowerlike $Ce_{1-x}Zr_{x}O_{2}$ as Catalyst Support for Hydrogen **Production from Biogas**

Tu Hoan Phuc

KYUSHU UNIVERSITY

Department of Hydrogen Energy Systems, Graduate School of Engineering, Kyushu University, Japan

Subtitle: Ni-loaded ceria microspheres for biogas reforming

EXPERIMENTAL

Preparation of flowerlike-CeO₂ powder (Ce(F))

Preparation of paper-structured catalysts (PSCs)

Dry reforming (DRM) tests with PSCs

Ingredients in the Precursor Solution for Hydrothermal Synthesis Aiming at Producing Flowerlike-CeO ₂ Powder (Ce(F)).			
Sample	Glucose (mol)	Acrylic acid (mol)	25 wt% NH ₄ OH (mL)
а	0.0150	0.0225	4.4
b	0.0150	0.0225	5.5
С	0.0150	0.0225	6.6
d	0.0150	0.0225	7.7
е	0.0075	0.0225	6.6
f	0.0150	0.0150	6.6
g	0.0150	0.0300	6.6

RESULTS AND DISCUSSION

Ce(F)g after Ni loading

 \bullet Cubic CeO₂ Cubic Ni

Test conditions

20 mm

- Temperature: 750 °C
- Fuel composition: $CH_4:CO_2:N_2 = 1:1:1$
- Total flow rate: 60 mL min⁻¹
- Gas hourly space velocity (GHSV): ~2500 h⁻¹

Reformate composition was analyzed every 0.5 h using gas chromatography (GC-20B; Shimadzu, Japan).

Methane conversion (%)

= $[CH_4 \text{ convert}]/ [CH_4 \text{ in}] *100\%$

- Mesoporous CeO₂ microspheres with $\phi 4 - 5 \mu m$ were obtained.
- Petal thickness was 30 50 nm.
- Morphology could be controlled by adjusting the ingredients.

Ce(F)g with the highest surface area: of 78.8 m² g⁻¹ was the best.

catalyst loading. Ni/Ce(F)g had the specific surface area of 58.5 m² g⁻¹.

CH₄ conversion

Ni/Ce(F)g was formed into a catalyst-sheet for the application to **DIR-SOFC**.

Structure of prepared PSCs

XRD patterns after reduction

Dispersions of catalysts in the fiber network

TPO profiles after 15 h DRM test

SUMMARY

- Coking-tolerant paper-structured catalyst (PSC) for the dry reforming of methane (DRM) was studied.
- Ni/Ce(F)_a-PSC exhibited excellent catalytic performance comparable to the conventional best PSC (Ni-loaded $Ce_{04}Zr_{06}O_{2}$ (CeZ)-dispersed PSC prepared by co-precipitation (on paper synthesis)).

 \rightarrow The flowerlike ceria-zirconia solid solution should be synthesized to further increase the catalytic performance.