

Naイオン電池用Cr含有ポリアニオン系正極材料の充放電反応機構解明 <u>西尾陽(総合理工学府)</u>

Introduction

● ポリアニオン系高電位正極材料

表1 Naイオン電池用ポリアニオン系高電位正極の報告例

年	正極	電圧 [V vs. Na/Na+]	価数	Ref.
2017	$Na_4Ni_3(PO_4)_2P_2O_7$	4.8	Ni ²⁺ /Ni ³⁺	1
2018	$Na_3Cr_2(PO_4)_3$	4.5	Cr ³⁺ /Cr ⁴⁺	2
2013	$Na_4Co_3(PO_4)_2P_2O_7$	4.4	Co ²⁺ /Co ³⁺	3
2016	Na ₂ CoP ₂ O ₇	4.3	Co ²⁺ /Co ³⁺	4
2016	Na ₇ V ₃ (P ₂ O ₇) ₄	4.0	V ³⁺ /V ⁴⁺	5
2013	$Na_3V_2(PO_4)_2F_3$	3.6/4.1	V ³⁺ /V ⁴⁺	6
2014	$Na_2Fe_2(SO_4)_3$	3.8	Fe ²⁺ /Fe ³⁺	7
2002	$Na_3V_2(PO_4)_3$	3.3	V ³⁺ /V ⁴⁺	8
 H. Zhang, et al., NPG Asia Mater., 9 (2015) e370. M. Nose, et al., J. Power Sources, 234 (2013) 175–179. S. Liu, et al., Adv. Energy Mater., 6 (2016) 1502147. P. Barpanda, et al., Nat. Commun., 5 (2014) 4358. 		 2) K. Kawai, et al., ACS Appl. Energy Mater., 1 (2018) 928. 4) H. Kim, et al., Angew. Chem., 128 (2016) 6774–6778. 6) K. Chihara, et al., J. Power Sources, 227 (2013) 80-85. 8) Y. Uebo, et al., The Reports of Institute of Advanced Material Study, Kyushu University, 16 (2002) 1. 		

Experimental

● 電池作製条件

コインセル: 2032 coin type cell 正極(合剤電極)(Φ 15 mm): 活物質:*AB:**PTFE = 70:25:5 (wt.%) *AB: Acetylene black **PVDF: PolyVinylidene DiFluoride 負極 (Φ 15 mm): Na金属 電解液: 1 M NaPF₆ in EC:DEC (1:1 vol.) グローブボックス内の露点: < -80℃

● XRD測定条件

測定装置: Miniflex 600 X線発生源: Cu Kα 管電圧: 40 kV 管電流: 15 mA 測角範囲: 10~80° 走査速度: 10º / min

● SEM測定 測定装置: JCM-7000(JEOL)

● 電気化学測定条件

電流值: 1C = 127.6 mA/g 電位範囲: 5.0-2.5 V 充電規制容量: 127.6 mAh/g (2電子分理論容量)

● DFT計算条件 計算パッケージ: VASP PAW法 交換相関汎関数:PBE カットオフエネルギー: 520 eV Hubbard U for chromium : 4.70 eV

k点メッシュ:Gamma centered 4 × 4 × 2

Results and Discussion

約4.7 V vs. Na/Na+に充放電プラトーが可逆的に観察され、F-の導入により $Na_3Cr_2(PO_4)_3$ と比較して0.2 Vの高電圧化が認められた。

充電過程においてCrのスペクトルが高エネルギー側にシフトし、Oについて は充放電により可逆的なプリエッジピークの増減が見られたことから、Crと Oが充放電反応における電荷補償を担っていることが示唆された。

Conclusion

- 充放電測定より、約4.7 V vs. Na/Na+に充放電プラトーが観察され、F-の導入により0.2 Vの高電圧化が認められた。
- DFT計算より、Na₃Cr₂(PO₄)₂F₃からNa⁺が脱離する際にCrとOを中心としたレドックスが起こることが予測された。
- NEXAFS測定より、充放電過程における電極反応の電荷補償についてはCrとOが寄与していることが示唆された。