

nergy Week 2021

Carbon Dioxide Utilization for Fast Algae Cultivation

^{1,2,3}Mir Shariful Islam, ^{1,2}Bidyut Baran Saha

¹ International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan ² Mechanical Engineering Department, Kyushu University, Fukuoka, Japan ³Department of Oceanography, University of Dhaka, Dhaka, Bangladesh Email: saha.baran.bidyut.213@m.kyushu-u.ac.jp

4. Results & future plan

1. Introduction

Algae photosy are organisms commonly used the valuable compounds composition and exhale ox can be an alternative resou food, fuel, ensuring sustainable human civilizat Challenges:

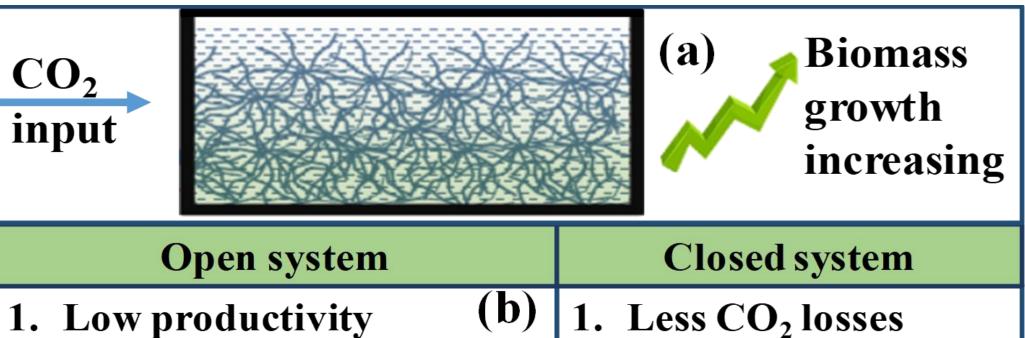
Operating and maintenar □ Initial high costs construction □ Large scale fast algae cultivation **Research approach:** \Box Using CO₂ for fast growth of algae Closed photobioreactor system cultivation

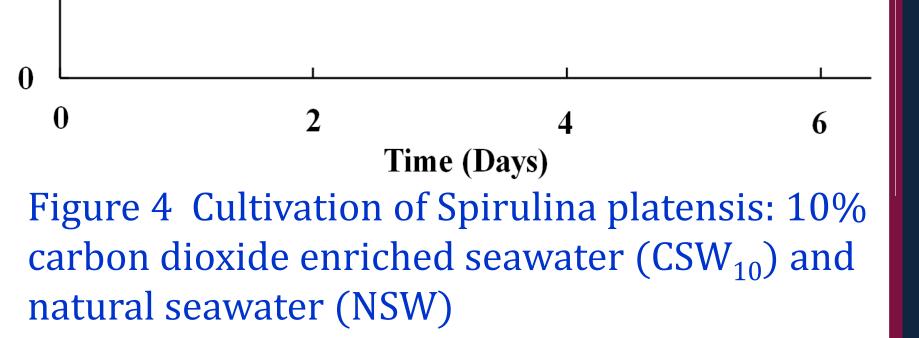
ynthetic	Tri-dimensional approach (TDA)						
d due to	Utilization	Nogativo	Mitigation				
in their							
xygen. It	of Green	CO ₂	of food				
urce for	technology	emission	crisis				
, and	Fast algae production						
tion.	rast algae production						
	2 ZERO HUNGER	3 GOOD HEALTH AND WELL-BEING	7 AFFORDABLE AND CLEAN ENERGY				
nce cost							
iction							

✤ In the experiment, our 1.6 biomass of Spirulina platensis increases 1.7 times in 10% CO₂ 1.2 enriched seawater (CSW_{10}) more than natural seawater $\overline{\mathbf{S}}$ (NSW). ž 0.8 For the first 2 days the growth rate of algae is almost the 🛱 0.4

same. maximize the effective ΠO microalgae for parameters cultivation, we simulate this system by using numerical analysis as well as kinetics modeling (logistics equation) and find the predicting values.

13 CLIMATE ACTION 14 LIFE BELOW WATER **9** INDUSTRY, INNOVATION AND INFRASTRUCTURE


This research related directly to six and indirectly ten Sustainable development goals 2020.

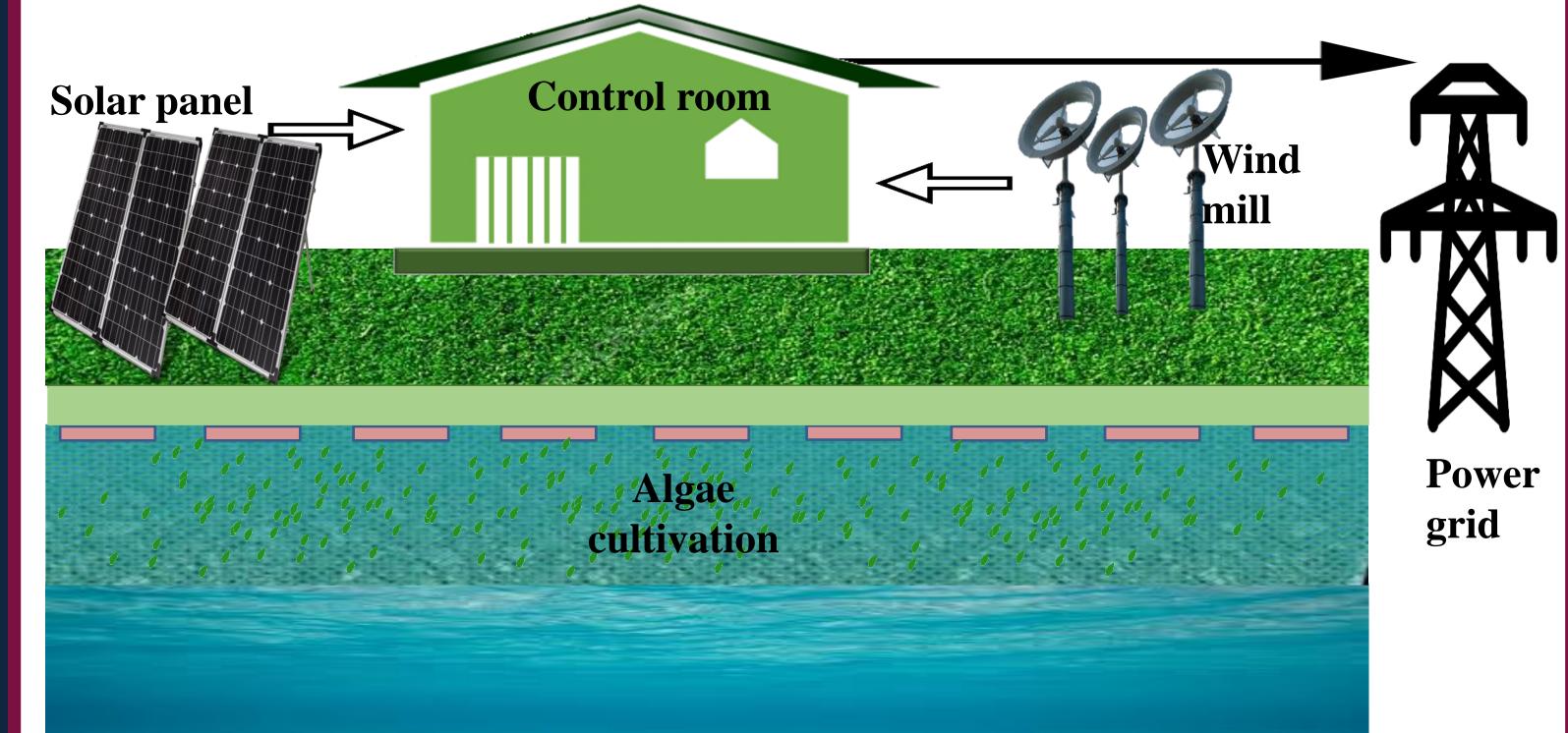

Figure 1 Algae cultivation in TDA approach and sustainable development goals 2020

2. Background

 \succ Microalgae can be cultivated in both open systems and closed photobioreactors. It is a significant challenge to design closed photobioreactors that are economically potential for large scale cultivation. We used carbon di-oxide from the powerplant to reduce the production cost, contamination chance and increase productivity.

It ensures high value products, such as nutraceuticals, beta carotene, cosmetics, hiofuels fish

Experimental data with CSW₁₀

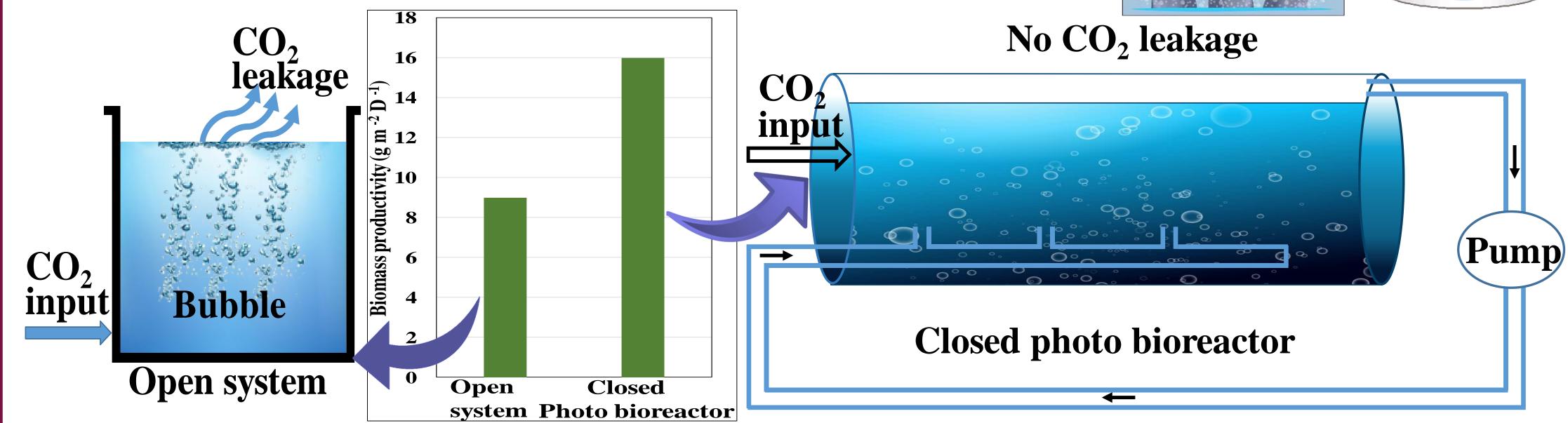

-- predicted data with CSW₁₀

-- Predicted data with NSW

• Experimental data with NSW

Table: Vision of fast microalgae cultivation and negative CO₂ emission

2 years	5 years	10 years
Double than present yield	Triple	More than 6- fold
1 ton/year	3-fold	10-fold
used for cultivation	app. 20-ton water	Large scale production of seaweed
J	Double than present yield 1 ton/year 300 litres of water used for cultivation	Double than present yieldTriple1 ton/year3-fold300 litres of waterThe pilot system



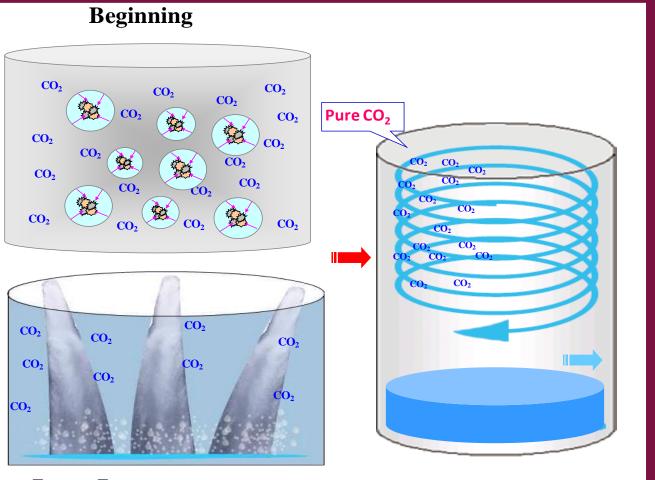

DIOIUEIS, IISI	-		-			
,	2.	High contamination	2.	No contamination		
	3.	High CO ₂ losses	3.	High productivity		
feed, and many industrial		. Not hygienic		 4. Reproducible 5. Intact food quality 		
		Low operating cost	0.	Easy to predictability		
	/ •		7.	Good control		
require arable	8.	Very high water loss	8.	Low water loss		
land and fresh						
wator	Figure Z Algae cultivation in (a) closed system (b)					
waltı.	comparison of open and closed photobioreactor system					
	and animal feed, and many industrial applications. It does not require arable	 and animal feed, and many industrial applications. It does not require arable land and fresh water 3. 4. 5. 6. 7. 8. 	 and animal feed, and many industrial applications. It does not require arable land and fresh water 2. High contamination 3. High CO₂ losses 4. Not hygienic 5. Difficult to collect biomass 6. Low operating cost 7. Weak control 8. Very high water loss 	 and animal feed, and many industrial applications. It does not require arable land and fresh water 2. High contamination 3. High CO₂ losses 4. Not hygienic 5. Difficult to collect biomass 6. Low operating cost 7. Weak control 8. Very high water loss 6. Figure 2 Algae cultivation in (a) cl 		

Figure 5: Large scale cultivation of microalgae for reducing negative CO₂ emission

3. Methodology

- High dissolved gas dissolution (HDGD) technique has been applied to cultivate Spirulina species for the first time. This new technique is better than any other conventional gas mixing system.
- It is possible to dissolve gases at normal temperature in contained or seawater.
- To make a prototype for fast algae cultivation with some customization of the current model and choose promising microalgae strain for collect data.
- To test the algae cultivation data and compare it with the prior standard results for maximizing productivity with minimal cost.

5. Summary

- Microalgae the İS most alternative promising resource for ensuring functional foods (human, animal diets of fish food), finance, and fuel security. □ A closed photobioreactor system reduces the leakage of carbon dioxide and ensures hygienic issues for algal cultivation. □ High dissolved gas dissolution (HDGD) system is an innovative technique for dissolving various gases
 - on to water where

Figure 3: HDGD technique and Biomass productivity in open system and without CO₂ leakage in closed photobioreactor

approximately 100% dissolution is possible. Using the HDGD system, captured CO₂ can be dissolved on to water without any risk of exposing greenhouse gas into the air. □ In a lab-scale experiment, it is

observed that algae absorb carbon-di-oxide and increase the production of biomass.

References

[1] Singh J and Dhar DW (2019) Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-art. Frontiers in Marine Science 6:29. [2] Andrade LM, Andrade CJ, Dias M, et al. (2018) Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Processing and Technology; 6(1): 45-58. DOI: 10.15406/mojfpt.2018.06.00144.

[3] Islam M.S. et al. (2017) A Procedure to Fit an Interpolating Curve to a Set of Logistic data, Dhaka University Journal of Sciences 65(2): 103-105.

[4] Wang J. et al. (2018) Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device, App.Mic.Bio.102: 8979-87.

QR code of Saha Laboratory website