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Fuel cell - core technologi`cal element of the 
sustainable “Hydrogen society”

Barriers of wide deploymet:
> Cost of hydrogen fuel
> Lack of infrastructure (e.g. fuelling stations)
> Cost of fuel cells (Pt in electrocatalyst, bipolar 
   plates and proton exchange membrane)

Benchmark materials for PEM - perfluorinated 
sulfonic acid ionomers: Nafion®, Aquivion®, 3M® 

Proton conductivity ~ 100 mS/cm
IEC ~ 0.9 mmol [H+]/g
Cost ~ US$600 to 1200 per m2
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Disadvantages: high-cost, degradation, non-recyclable

Development of low-cost and efficient PEM based on nanocellulose
Purpose of this work:

Proton exchange 
membrane fuel cell 
(PEMFC)

RESEARCH MATERIAL: NANOCELLULOSE

Main types of NC: 
 - cellulose nanocrystals (CNC) 
 - cellulose nanofibers (CNF) 

Characteristic properties:
 - high mechanical strength
 - low density & high surface area
 - non toxicity & biodegradability
 - flexibility 

Membranes features
 - uniform thickness in casted 
   membranes (aqueous solution)
 - natural drying (no extra energy)
 - suitable for mass production
 - flat and stable after hot-pressing

Nanocellulose can be obtained from various types of plants by 
mechanochemical processing or directly in bacteria: 
   - strong acid treatment
   - mechanical shearing
   - grown in microorganisms

Nanocellulose

Molecular structure

nanocrystals nanofibers

strong acid treatment mechanical shearing 
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Higher plants, bacteria,
simple animals (e.g. tunicates)

“Eco-friendly, low-cost 
material for fuel cell 
applications”

crosslinked cellulose

MODIFICATION APPROACH: SULFONIC ACID CROSSLINKING
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One-step approach

Crosslinking: one-step reac-
tion between mixed acid and 
nanocellulose results in a 
formation of multiple ester 
bonds disrupting the natural 
hydrogen-bonding network 
of cellulose. 

Hypothesis: surface of nano-
cellulose covered with suffi-
cient amount of sulfonic acid 
group (strong proton con-
ducting moiety) will make a 
good proton conductor.

nanofiber-based

nanocrystal-based

MACROSCOPIC & MICROSCOPIC MORPHOLOGY

[hot-pressed] 

CNF paperConventional paper 3%-SSA@CNF Membranes of 3-30 microns in 
thickness are distinctively differ-
ent from conventional cellulosic 
membranes (e.g. paper), free- 
standing and self supporting. 

Maximum concentration of SSA 
in CNF ~ 10 wt%, up to 50 wt% 
can be blended with CNC  

5 x 5 cm
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Lower thickness of nanocellulose PEMs is possible due to material properties + high gas barrier
- Thickness of the CNF and SSA@CNF membranes is below 10 µm
- State-of-art Nafion in Toyota Mirai: 2008 (~50 µm); 2017 (14 µm); goal for 2020 - 10 µm

PROTON CONDUCTIVITY OF CROSSLINKED MEMBRANES

Strong dependence of σ on relative humidity, weaker dependence on temperature (9%-SSA@CNF). 
Crosslinking of the CNF with SSA resulted in ca. 40 times increased proton conductivity compared 
to unmodified CNF sample. 

(PRELIMINARY RESULTS ): COMPARISON WITH LITERATURE

- Results of this work compared to literature shows that utilization of asid crosslinked nocellulose
  allows substantial increase in the proton conductivity and fabrication of thinner membranes.

- Considering high gas barrier of nanocellulose membranes PEMs with competitive properies 
  (specific resistance, chemical & mechanical stability) can be fabricated, that are environmentally  
  friendly and have substantially lower cost compared to benchmarks (e.g. Nafion).

CONCLUSIONS & FUTURE WORK
1. Nanocellulose is a promising biopolymer platform for the development of novel PEM
   for fuel cell applications.
2. Structural integrity of the organic acid crosslinked cellulose nanofiber and 
   nanocrystal membranes was proven in the region of sub-10 micron thicknesses.
3. Morphological features (SEM), chemical structure (FTIR) and swelling behaviour 
   in water suggest a promising material with competitive proton conductivity.
 
Future experiments: mechanical properties, proton conductivity at high temperatures, 
chemical stability in hot water, O2 and H2 permeability, fuel cell performance. 
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