

微小流路による微小管集団運動の制御

Control of Microtubules Collective Motion by Microflow Channel Daisuke Inoue

CytoArchitec Lab, Faculty of Design, Kyushu University

Introduction

Microtubule(MT)

In vitro gliding assay +ATP (Chemical energy)

Kinesin motor protein propels MTs by converting the chemical energy of ATP into mechanical work.

ATP driven micro transportation devices

Kinesin 1

MT/kinesin system can transport and organize material at their size

Micro-biosensor device activated by ATP

Collective motion

Highly-dense gliding MTs autonomously organize directed flow and increase their local density.

scales at high energy efficiency. Microflow channel can guide

moving direction of MTs.

Aim of project

To develop a microdevice to concentrate analytes by controlling microtubule collective motion.

Experiment 1: Poly(N,N-dimethylacrylamide) gel **Materials & Methods** Microfabrication Photomask (Toppan) 3.8 µm Cheap LED UV light (Jaxaman) OH Glass OH Vinylsilane $-CH_2$ Wavelength: 365 nm Radiance: 1600 mW/sr/m² 30.3 µm -56.4 µm 44.1 um 87.7 µm Photomask Available resins to make microflow channel **Materials** Descriptions Nonionic, neutral hydrogel 100 µm Less interaction with proteins. N,N-dimethylacrylamide (DMAAm) Low toxicity unlike acrylamide. 4M DMAAm mix[†] *MT gliding assay in PDMAAm microflow channel* Weak bond with glass substrate. UV(365nm), LAP* UV responsive epoxy resin 1 sec Less steps for preparation Norland Optical Adhesive β -ME, Strong bond with glass substrate (NOA61) UV, 1 min LAP Non-specific interaction with proteins. Gel PDMAAm gel *In vitro* Gliding assay Methylcellulose +ATP MTs stuck in the soft Taxol-stabilized PDMAAm gel ATTO565-MTs hydrogel wall. Wash

[†]4M DMAAm, 4mol% MBAA, 0.05mol% LAP, 53.6% Glycerol *LAP (lithium phenyl-2,4,6trimethylbenzoylphosphinate) \rightarrow Water-soluble photoinitiator to start radical polymerization of the gel

Experiment 2: Norland Optical Adhesive 61 (NOA61)

MTs

Glass

90% MTs climb up NOA wall where kinesin is absorbed \rightarrow NOA can't guide MTs.

Dense bundle formation of MTs in microflow channel

Summary

PDMAAm gel was not available to guide gliding MTs.

150

150

150

- Modification of NOA61 with PEG and PluronicF127 improved guiding probability of MTs from 10% to 100%.
- Microflow channel with a certain width (<50 µm) increased the density of MTs and assemble dense MT bundles.

Next plan: Demonstration of molecular sensing of small volume analytes Acknowledgement:

This work is supported by Q-pit Support Program for Young Researchers and Doctoral Students., JSPS LEDER program, JSPS Grant-in-Aid for Early-Career Scientists, Nikki-Saneyoshi Scholarship Foundation Grant, QR project, Wakaba-challenge, Grant-in-Aid for Transformative Research Areas, (A).