

Opto-Ionics – Dynamic Investigation of the Mechanism behind the Increased Ionic Conductivity under Light Illumination

D. Klotz, T. Defferriere, J. C. Gonzalez Rosillo, J. L. M. Rupp, H. L. Tuller

International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University, Fukuoka, Japan Department of Materials Science and Engineering (DMSE), Massachusetts Institute of Technology (MIT), Cambridge, USA

Recent Results: Increased Ionic Conductivity under UV Illumination

Impedance Spectroscopy Results (dark/light)

nergy Week 2022

Modelling Background

nergy Week 2022

Single-Frequency Impedance Transients

Single-Frequency Electrochemical Impedance Spectroscopy

Continuously measuring one single frequency over time while switching the light on and off (measured by Zurich Instruments MFIA)

ER

5

Single-Frequency Impedance Transients

Kyushu University Platform of Inter- / nsdisciplinary Energy Researc

Single-Frequency Impedance Transients

ushu University Platform of Interdisciplinary Energy

IMPS – Photoelectrochemical Impedance

IMPS: intensity-modulated photocurrent spectroscopy

photocurrent admittance

- result is a spectrum for a wide range of frequencies, mainly limited be the light source
- · well-established in the field of photoelectrochemistry
- · usually for "photoactive" devices

Advantages

- higher frequencies possible
- operating point can be chosen
- small-signal perturbation
- different process can be distinguished easily

Disadvantages

- bias voltage required
- currents might be very small (oscillating current as response to light even smaller)
- no on/off cycles (no triggering of specific events)

IMPS – **Results**

Summary

New "opto-ionic" effect was discovered!

- Dynamics used to identify the fundamental processes;
- different techniques come with different advantages and disadvantages;
- combining those techniques can help to identify photoelectrochemical processes.

Ongoing work:

- Clarify the fundamental processes;
- control the opto-ionic effect efficiently;
- design better materials with higher ionic conductivity.

Acknowledgements

This project is supported by the 2021 Support Program for Young Researchers and Doctoral Students.

This work was supported by JSPS Core-to-Core Program, A. Advanced Research Networks: "Solid Oxide Interfaces for Faster Ion Transport".

Funding from the Kakenhi Grant-In-Aid for young scientists, grant number 18K13993/20K15028, is also acknowledged.

polycrystalline sample

(3GDC_{polv})

