

Kyushu University Platform of Inter-/ Transdisciplinary Energy Research

Reverse NH₃ concentration effect on NH₃ induced hydrogen embrittlement

Nan Zhang^a, Ryosuke Komoda^{b, c}, Masanobu Kubota^c, Aleksandar Staykov^c

a. Graduate School of Kyushu University, b. Fukuoka University, c. WPI-I2CNER, Kyushu University

Background and Objective

KYUSHU UNIVERSITY

 $NH_3: \bigcirc$ Potential hydrogen carrier **Carbon-free fuel**

Important role in Carbon Neutral Society

Take-out point: We found **opposite** effect of NH₃ concertation on HE severity.

Fracture toughness test (JIC test)

ASTM E 1820 standard

- •Crosshead speed $(V): 2.0 \times 10^{-5}$ mm/s
- Gas temperature : 293 K (room temperature)
- •Gas pressure (p) : 0.1MPa

• Material : SCM440 (HV329)

Result: HE with 10,000 vppm was less than that with 1,000 vppm.

Conclusions

The HE became less severe with the increase in the NH_3 concentration at 2.0×10^{-5} mm/s.

Future Plan

Calculate NH₃ decomposition activation energy by DFT.