Photoelectrochemical water splitting system for biocatalytic hydrogen production

Jun Tae Song, Masaki Nobukuni, Yuta Itagoe, Motonori Watanabe, Atsushi Takagaki, Tatsumi Ishihara

Department of Applied Chemistry, Kyushu University International Institute of Carbon-Neutral Energy Research (I2CNER), Kyushu University

Inorganic-bio hybrid photocatalytic H₂ production

- E.coli cell: H₂-forming site in inorganic-bio hybrid photocatalytic system
- Redox mediator (MV) boosts hydrogen evolution

 \rightarrow Redox mediator should be key factor for biocatalytic H₂ production !

Honda et al., Angew. Chem. 2016, 128, 8177 2

Inorganic-bio hybrid photocatalytic H₂ production

- E.coli cell: H₂-forming site in inorganic-bio hybrid photocatalytic system
- Redox mediator (MV) boosts hydrogen evolution
 - \rightarrow Redox mediator should be key factor for biocatalytic H₂ production !

Reversible reaction of MV⁺ by oxygen \rightarrow Obstacle for overall water \leq ittr

Honda et al., Angew. Chem. 2016, 128, 8177 3

Photoelectrochemical (PEC) system approach

Photoelectrochemical (PEC) system approach

Experimental Method

(Photo)Electrochemical evaluation condition (three-electrode configuration)

- Working electrode (WE) :
 - Cathode materials: Au, Ag, Pt, Ni,
 - Anode: TiO₂ (coated on FTO by electrophoresis method)
- Counter electrode (CE) : Pt wire
- Reference electrode (RE) : Ag/AgCl in 3.0M NaCl
- Electrolyte: 1.0M KOH +1.0M KH₂PO₄ (pH=8) + MV

Cathode materials property on MV²⁺ reduction

✓ The effect of cathode material on MV²⁺ reduction

- Ag, Au, Ni: High Faradaic efficiency for MV reduction, low current density
- Pt: the highest current density due to superior H₂ evolution activity

Cathode materials property on MV²⁺ reduction

✓ The effect of cathode material on MV²⁺ reduction

- Ag, Au, Ni: High Faradaic efficiency for MV reduction, low current density
- Pt: the highest current density due to superior H₂ evolution activity

Partial current density: $J_{MV2+/MV+}$ = total current density (J) x Faradaic efficiency

 $J_{MV2+/MV+}$ for Pt = 0.17 > $J_{MV2+/MV+}$ for Ni = 0.09

Fabrication of TiO₂ anode

SEM & EDX mapping images of P25 TiO₂ electrode

• Via electrophoresis, we prepared ~3.5 μ m TiO₂ anode on FTO substrate.

Characteristic of TiO₂ anode

- P25, anatase and rutile type of TiO_2 are deposited on FTO glasses.
- XRD & UV-Vis confirm each of TiO₂ phases is successfully prepared.

Electrochemical behavior of TiO₂ anode

✓ I-V curves w/ light illumination

• P25 shows the highest PEC activity.

Electrochemical behavior of TiO₂ anode

14

Electrochemical behavior of TiO₂ anode

✓ Open-circuit property

Rutile

-0.82 V

PEC reduction of MV in open-circuit condition

- For P25, 3.5 times higher current density is obtained w/ MV than w/o MV.
- We confirmed MV⁺ production by reducing MV²⁺ without external bias.

PEC reduction of MV in open-circuit condition

- P25 shows the highest MV⁺ formation rate.
- MV reduction reduction is dominant under open-circuit condition.
 - \rightarrow MV reduction potential should be lower than hydrogen evolving potential.

PEC reduction behavior of MV with external bias

- Applied bias boosts H_2 production while decreasing MV^{2+} reduction.
 - → To selectively transfer electrons for MV reduction, controlling cathodic potential should be significant issues.

Summary

- MV is key element for electron transfers to biocatalysts for H₂ evolution.
- We approach PEC system for inorganic-bio water splitting.
- Electrochemical behavior of MV with Ag, Au, Ni, Pt has been investigated.
- PEC cell with P25 TiO₂ & Pt shows successful MV reduction without bias.
- Applied bias just boosts H₂ production while decreasing MV reduction reaction.
- Cathode potential should be properly controlled for preferential MV reduction toward biocatalytic H₂ production.

Thank you for your kind attention !

20